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Can we approximate any reasonable function with a coarsely quantized neural
network?

Weilin Li (Courant Institute) One-bit Bernstein and neural networks December 20, 2021 5/40



Can we approximate any reasonable function with a coarsely quantized neural
network?

@ A feed forward neural network is a function represented as a composition,
x = pr(AL(- - p1(Ax + b1)) + bu),

where each weight matrix A, and bias vector b, are real.
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Can we approximate any reasonable function with a coarsely quantized neural
network?

@ A feed forward neural network is a function represented as a composition,
x = pr(AL(- - p1(Ax + b1)) + bu),
where each weight matrix A, and bias vector b, are real.

@ A quantized NN is one where all non-zero parameters (weights and biases) must
be selected from a set of discrete values (“alphabet”).

For example, a “high-resolution” arithmetic progression

A= {—M6, (=M +1)5,..., M5}
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Can we approximate any reasonable function with a coarsely quantized neural
network?

@ A feed forward neural network is a function represented as a composition,
x = pr(AL(- - p1(Ax + b1)) + bu),
where each weight matrix A, and bias vector b, are real.

@ A quantized NN is one where all non-zero parameters (weights and biases) must
be selected from a set of discrete values (“alphabet”).

For example, a “high-resolution” arithmetic progression
A= {-Mé§,(—M + 1)6,...,M5}.

@ A coarsely quantized NN uses an alphabet with a small collection of values.
For example, a one-bit alphabet,

A= {£1}.
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Motivation 1: Practical issue
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Figure: Memory footprint of some networks [Canziani, Paszke, Culurciello 16]
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How to transfer huge networks onto low power devices (phones, cars, tablets, etc.)?

Survey article [Yunhui Guo 18]

Quantize the network — low-bit representation
— cheaper storage cost and faster forward pass
— less energy consumption

Use of sophisticated quantization techniques: [Lybrand, Saab 21], [Ashbrock, Powell 21]
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Motivation 2: Over-parameterization

For each f, look at the parameters that represent f,

P(f) = {# € R”: NNy = f}
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A more technical viewpoint from approximation theory

What makes the main question difficult to answer?
Numerous results for approximation by neural networks (incomplete list of course):

[Cybenko 89], [Barron 94], [Yarotsky 17], [Shaham, Cloninger, Coifman 18], [Bolcskei, Grohs, Kutyniok,
Petersen 19], [Daubechies, DeVore, Foucart, Hanin 21}, [Lu, Shen, Yang, Zhang 21]
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A more technical viewpoint from approximation theory

What makes the main question difficult to answer?
Numerous results for approximation by neural networks (incomplete list of course):

[Cybenko 89], [Barron 94], [Yarotsky 17], [Shaham, Cloninger, Coifman 18], [Bolcskei, Grohs, Kutyniok,
Petersen 19], [Daubechies, DeVore, Foucart, Hanin 21}, [Lu, Shen, Yang, Zhang 21]

Main strategy of the above approximation strategies:

For fixed f,
f ~ Z aquk
k

@ {&«}« are implementable by a neural network with carefully chosen parameters,
e.g., local polynomials, ridge functions, wavelets, Fourier

@ {a}r C R depend onf, e.g., basis or frame coefficients
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A more technical viewpoint from approximation theory

What makes the main question difficult to answer?
Numerous results for approximation by neural networks (incomplete list of course):

[Cybenko 89], [Barron 94], [Yarotsky 17], [Shaham, Cloninger, Coifman 18], [Bolcskei, Grohs, Kutyniok,
Petersen 19], [Daubechies, DeVore, Foucart, Hanin 21}, [Lu, Shen, Yang, Zhang 21]

Main strategy of the above approximation strategies:

For fixed f,
f ~ Z ak¢>k
k

@ {&«}« are implementable by a neural network with carefully chosen parameters,
e.g., local polynomials, ridge functions, wavelets, Fourier

@ {a}r C R depend onf, e.g., basis or frame coefficients
Approach needs to be modified when we consider coarsely quantized networks!
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Our wish list

Find a suitable set of functions {¢x }« such that:

@ Approximation. Linear combinations of {¢ }« can efficiently approximate large
function classes.

@ Implementation. The {¢: }« can be implemented by a coarsely quantized neural
network.
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Our wish list

Find a suitable set of functions {¢x }« such that:

@ Approximation. Linear combinations of {¢ }« can efficiently approximate large
function classes.

@ Implementation. The {¢: }« can be implemented by a coarsely quantized neural
network.

@ Quantization. Coefficients in the {¢« }« basis can be quantized in an effective way.
For each {a}« we can find {ox} C A such that

Zak¢k — Z ordr  is small.
3 X
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Our wish list

Find a suitable set of functions {¢x }« such that:

@ Approximation. Linear combinations of {¢ }« can efficiently approximate large
function classes.

@ Implementation. The {¢: }« can be implemented by a coarsely quantized neural
network.

@ Quantization. Coefficients in the {¢« }« basis can be quantized in an effective way.
For each {a}« we can find {ox} C A such that

Zak¢k — Z ordr  is small.
3 X

Three term decomposition:
f—fw= (f—zak¢k) + (Zak¢k—zak¢k) + (ng¢k —fNN) .
k k k k

approximation by ¢ error quantization error implementation error
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Function approximation with integer Bernstein

Kantorovich: If f: [0,1] — R is continuous and f(0) and f(1) are integers, then the

function
" . kN [(n e
BN =Y [f(*) (k)]ka —a
k=0
converges uniformly to f as n — oco. Here, [1] is rounding 7 to the nearest integer.

Proof can be found in Chapter 2.4 of Constructive Approximation: Advanced Problems
by Lorentz, v Golitschek, and Makovoz.
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Function approximation with integer Bernstein

Kantorovich: If f: [0,1] — R is continuous and f(0) and f(1) are integers, then the

function
" . kN [(n e
BN =Y [f(*) (k)]ka —a
k=0
converges uniformly to f as n — oco. Here, [1] is rounding 7 to the nearest integer.

Proof can be found in Chapter 2.4 of Constructive Approximation: Advanced Problems
by Lorentz, v Golitschek, and Makovoz.

@ Implies that polynomials with integer coefficients are dense in the space of
continuous functions.

@ Main drawback is that if ||f]|. < 1, then

‘ [f(%) <Z>] ‘ could be as bigas 2",

so not helpful for coarse quantization.
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One-bit Bernstein?

Bernstein polynomials of degree n: for each 0 < k < n,

Puj(x) == <Z> K —x)~

Berstein: For any f € C([0, 1]),

I = Bl = [ - Eijf(f)pn,k

— 0.

‘ oo
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One-bit Bernstein?

Bernstein polynomials of degree n: for each 0 < k < n,

Pu(x) == <Z> K —x)~

Berstein: For any f € C([0, 1]),

I = Bl = [ - Eijf(f)pn,k

Question: For any f € C([0,1]) and € > 0, is there an integer n and {o% }—, such that

ox € {£1} and
Hf - Z OkPn,k
k=0

— 0.

‘ oo

<e€?

‘ oo
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One-bit Bernstein?

Bernstein polynomials of degree n: for each 0 < k < n,

Pui(x) = <Z>xk(l —x)"fk.

Question: For any f € C([0, 1]) such that ||f||~ < 1 and € > 0, is there an integer n and
{0k }i—o such that o, € {£1} and for all x away from the endpoints,

V(x) - zn:akpn,k(x)’ <e?
k=0
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A first approximation result

For any Lipschitz continuous f with ||f||« < 1 and integer n, there exist
{oW}i_y C {£1}, such that

V(x) - ;Ukpn,k(x)’ < lﬁw'

nx(1 —x)
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A first approximation result

For any Lipschitz continuous f with ||f||« < 1 and integer n, there exist
{oW}i_y C {£1}, such that

V(x) - ;Ukpn,k(x)’ < lﬁw'

nx(1 —x)

@ By density, can extend to continuous functions.

@ In comparison to Kantorovich, our construction uses significantly fewer bits.
@ Implies a L” estimate: for all p € [1,2),
n 1 .

’V‘Z"k”"’k’ < L iy

— v (p.1) Vn
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A constructive proof

The sequence of 1 are chosen through an algorithm called first order S A.
Set ax = f(k/n) and we find o such that it satisfies a finite difference equation

ax — ox = (Au)g := u — w—1.
Can always be done with a ||| < 1 due to the assumption that ||f||- < 1. Explicitly,

U i= U1 + ax — o, ok = Sign(ax + u—1).
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A constructive proof

The sequence of 1 are chosen through an algorithm called first order S A.
Set ax = f(k/n) and we find o such that it satisfies a finite difference equation

ax — ox = (Au)g := u — w—1.
Can always be done with a ||| < 1 due to the assumption that ||f||- < 1. Explicitly,

U i= U1 + ax — o, ok = Sign(ax + u—1).

Bound the total error:

) Zokpnk )
V Zakpn i(x ‘ + ‘ i(dk — o)k (X)

sle | ;mu)kpn,k(x)]
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Defining py k42 := 0,

| imu)kpn,km] 30 (oss) i)

k=0

< e oo Z |Pui(x) — paxs1(x)]  (Frame variation)

Hulloo

- (n+ Dx(1 —x) Z |(k+1 + D)x| pug1 g1 (x)
Ul| oo . 1/2
- (nl‘%(z| (k+1 + Dxf? Pn+1,k+1(x))
R —
nx(1 —x)

Frame variation 2 papers, [Benedetto, Powell, Yilmaz, 06]
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Simple demonstration

Consider the continuous function,
. (3.
f(x) = max (mm (E sin(8x), 1), —1).

Plot of B, (f) and constructed quantized approximation, for n = 100.

Coefficients of quantized approximation (where —1 « 0):
101011111111111111111111111111110111101010010000000
00000000000000000000010001001101110111111111111111
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Technical difficulties when extending to higher dimensions

The previous results give us hope that Bernstein polynomials satisfy our “wish list”, but
there is still a main concern when applying these results to networks:
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Technical difficulties when extending to higher dimensions

The previous results give us hope that Bernstein polynomials satisfy our “wish list”, but
there is still a main concern when applying these results to networks:

high dimensionality —  spaces of smooth functions.

Multivariate Bernstein of order n: For each k € N with 0 < ki <n,

Pak(X) 7= Pugy (x1) =+ Py (¥a)-
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Technical difficulties when extending to higher dimensions

The previous results give us hope that Bernstein polynomials satisfy our “wish list”, but
there is still a main concern when applying these results to networks:

high dimensionality —  spaces of smooth functions.

Multivariate Bernstein of order n: For each k € N with 0 < ki <n,
Pge(X) := Pugy (X1) * + * Py (Xa)-

@ High dimensionality is a major issue for ©A. No available O(1)-alphabet result for
stable d dimensional £ A.

@ Higher order smoothness is an issue do to this saturation result:
If f € C*([0, 1]), then

lim n(B.(f)(x) — f(x)) = [T x)x(1—x)

n—o00 2

Bernstein polynomial of f is unable to exploit additional smoothness.
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YA in higher dimensions

Say d = 2. How to order {pui}i,—ox,—0?
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YA in higher dimensions

Say d = 2. How to order {pui}i,—ox,—0?

]
]
e ]
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YA in higher dimensions
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Quantization error

Theorem

Pick any 1 < ¢ < d and for any {ax }o<i<n With ||a|lecc < p < 1, let {ox}o<i<a bE @
solution to a r-th order A scheme applied only in the ¢-th direction,

a—o=(A)u

Then we have

‘ Z arpni(x) — Z kP k x)’ <, min (1 n~"? x, (1 —Xe)_r).

0<k<n 0<k<n

Relies on stability of one-dimension r-th order XA schemes
[Daubechies, Devore 03], [Guntlrk 03].
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lterated Bernstein

Saturation: If f ¢ C*([0, 1]), then
Tim n(B()(x) — £ = LD,

How to get around the saturation problem?
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lterated Bernstein

Saturation: If f € C*([0, 1]), then

lim n(B, () (x) — f(x)) = w

n—o00

How to get around the saturation problem?

Classical work: [Micchelli 73], [Felbecker 79] Define the iterated Bernstein operator
Unanlf) i= (1= (1= B)") ().
The for every f € C°([0, 1]),

If = Un o1 (Dlloo S Ifllesn™2.

Takes advantage of smoothness, but is U...(f) a linear combination of Bernstein
polynomials with small enough coefficients (necessary for quantization)?
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Approximation error by linear combinations of Bernstein

Theorem

Fix any integers d,s > 1,5 € (0, 1), andf € C*([0, 1]*). Then for all integers

ps SLWle
=44
there exist {ax }o<k<n Such that

Hf_ Z akPn,k

0<k<n

o Ifllesn™",

.

and
lalloo < [[flloc + 6.
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How to implement Bernstein polynomials?

512(1—7 311*1‘
1—9 21— z(1—2)?

(1-2)?
) (1—a)!

Figure: Pascal triangle implementation of Bernstein
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How to multiply with coarse quantization

Key formula:

ab = %(a+b)27 %azf le

2

Need to find a coarsely quantized neural network that can implement squaring.
Suffices for only non-negative a, b.
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How to multiply with coarse quantization

Key formula:

> 1

ab:%(a+b)zf%a .

2

Need to find a coarsely quantized neural network that can implement squaring.
Suffices for only non-negative a, b.

@ Easy if we use the quadratic non-linearity, p(t) = 1*/2, so

ab = p(a+b) — p(a) — p(b).

This is a {#1}-quantized quadratic network.
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How to multiply with coarse quantization

Key formula:

Lo 1
~a*— ~b
24 72

1
ab = 2( a+b)* —

Need to find a coarsely quantized neural network that can implement squaring.
Suffices for only non-negative a, b.

@ Easy if we use the quadratic non-linearity, p(t) = 1*/2, so
ab = p(a+b) — p(a) — p(b).

This is a {#1}-quantized quadratic network.

@ Squaring can be efficiently approximated by a ReLU network [Yarotsky 17], by
exploiting the formula

=, o 2x ifo<x<i
x(1— , 2
=D G o 2_2x fl<x<l.

m=1

Can do approximate multiplication with a {+1/2, £1, +2}-quantized ReLU
network.

Weilin Li (Courant Institute) One-bit Bernstein and neural networks December 20, 2021



Table of Contents

0 Main Results

Weilin Li (Courant Institute) One-bit Bernstein and neural networks December 20, 2021 32/40



Putting everything together

f—=fw = f—-f + fo—fo + fo — fiw
~—~— S—— ——

Bern. approx. error  Bern. quan. error  Bern. implementation error
@ fz = iterated Bernstein of f, then covered to linear Bernstein.
@ fp = function obtained from r-th order A applied to coefficients of f3.
@ fyy = coarsely-quantized neural network approximation of fp.
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Fix any integers s,d > 1, u € (0,1), and any f € C*([0,1]*) with ||f||oc < p.
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Theorem

Fix any integers s,d > 1, u € (0,1), and any f € C*([0, 1]) with ||f]|cc < . Forany
1 < ¢ < d and all integers

ns Sl
2(1 = p)
there exists a function fyy that is implementable by a coarsely quantized neural network
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Theorem

Fix any integers s,d > 1, u € (0,1), and any f € C*([0, 1]) with ||f]|cc < . Forany
1 < ¢ < d and all integers
sd®||f |l c2

n> g
T 2(1 = p)
there exists a function fyy that is implementable by a coarsely quantized neural network
such that for all x € [0, 1],

() = fiv ()] Set [Iflles min (1,072 (1 = x¢) ™).
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Fix any integers s,d > 1, u € (0,1), and any f € C*([0, 1]) with ||f]|cc < . Forany
1 < ¢ < d and all integers
> sd®||f |l c2

n b
T 2(1 = p)
there exists a function fyy that is implementable by a coarsely quantized neural network
such that for all x € [0, 1],

() = fiv ()] Set [Iflles min (1,072 (1 = x¢) ™).

fun can be chosen as either
@ a {+1}-quantized quadratic neural network with
O(n+d) layers,
O(dn* + dn)  nodes and parameters.

@ a{+£1/2,+1,+2}-quantized ReLU neural network with

O((n +d)(d+s/2) log n) layers,

0] ((n2 +dn?)(d + 5/2) log n) nodes and parameters.
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Network in the main theor

AN

bu g (1) by (2) bu gy (5) b, (1) bugs (:5)

k()

> opbui(x)
0<k<n

Figure: Coarsely-quantized network
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Binary Bernstein Algorithm

System parameters and assumptions:

@ d, dimension or number of variables,
@ s, smoothness of the target function,
@ u € (0,1), upper bound on
@ n, any integer at least sd*||f

Algorithm:

@ Input samples {f(k/n)}o<ik<n-
@ Calculate {ax }o<i<n defined to be

lloc,

/(1 = p)).

k
ap 1= Un, [s/2] (f) (;) .
@ Run s-th order XA quantization in the ¢-th direction on {ax }o<«<. to obtain

{or}o<r<n C {£1}.

@ Guaranteed that

00 = 3 aupns()] St [l min (1,020 (1 = 30) ™)

0<k<n
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Can these results be adapted and generalized to other approximation systems?
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Can these results be adapted and generalized to other approximation systems?

Some properties that we used:
@ Bernstein polynomials are non-negative and form a partition of unity.
@ Growth conditions on central moments.
@ Bernstein polynomials are localized but not too much.
@ Explicit formulas for p,«+1 — pak; in particular, there is significant cancellation.
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Binary encoding of a neural network

Given a trained neural network F we can query it at lattice points {F(k/n) }o<«<. and
use our algorithm to produce a one-bit coefficients

{orto<r<n C {£1}.

(Can even be computed in parallel.)
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Thank you!!
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