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Main question

Can we approximate any reasonable function with a coarsely quantized neural
network?

A feed forward neural network is a function represented as a composition,

x 7→ ρL(AL(· · · ρ1(A1x + b1)) + bL),

where each weight matrix A` and bias vector b` are real.

A quantized NN is one where all non-zero parameters (weights and biases) must
be selected from a set of discrete values (“alphabet”).

For example, a “high-resolution” arithmetic progression

A := {−Mδ, (−M + 1)δ, . . . ,Mδ}.

A coarsely quantized NN uses an alphabet with a small collection of values.

For example, a one-bit alphabet,

A1 := {±1}.
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Motivation 1: Practical issue

Figure: Memory footprint of some networks [Canziani, Paszke, Culurciello 16]
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How to transfer huge networks onto low power devices (phones, cars, tablets, etc.)?

Survey article [Yunhui Guo 18]

Quantize the network −→ low-bit representation

−→ cheaper storage cost and faster forward pass

−→ less energy consumption

Use of sophisticated quantization techniques: [Lybrand, Saab 21], [Ashbrock, Powell 21]

Weilin Li (Courant Institute) One-bit Bernstein and neural networks December 20, 2021 7 / 40



Motivation 2: Over-parameterization

For each f , look at the parameters that represent f ,

P(f ) = {θ ∈ RD : NNθ = f}

P (g)

P (f )
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A more technical viewpoint from approximation theory

What makes the main question difficult to answer?

Numerous results for approximation by neural networks (incomplete list of course):

[Cybenko 89], [Barron 94], [Yarotsky 17], [Shaham, Cloninger, Coifman 18], [Bolcskei, Grohs, Kutyniok,

Petersen 19], [Daubechies, DeVore, Foucart, Hanin 21], [Lu, Shen, Yang, Zhang 21]

Main strategy of the above approximation strategies:
For fixed f ,

f ≈
∑

k

akφk

{φk}k are implementable by a neural network with carefully chosen parameters,
e.g., local polynomials, ridge functions, wavelets, Fourier

{ak}k ⊆ R depend on f , e.g., basis or frame coefficients

Approach needs to be modified when we consider coarsely quantized networks!
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Our wish list

Find a suitable set of functions {φk}k such that:

Approximation. Linear combinations of {φk}k can efficiently approximate large
function classes.

Implementation. The {φk}k can be implemented by a coarsely quantized neural
network.

Quantization. Coefficients in the {φk}k basis can be quantized in an effective way.
For each {ak}k we can find {σk} ⊆ A such that∑

k

akφk −
∑

k

σkφk is small.

Three term decomposition:

f − fNN =
(

f −
∑

k

akφk

)
︸ ︷︷ ︸

approximation by φ error

+
(∑

k

akφk −
∑

k

σkφk

)
︸ ︷︷ ︸

quantization error

+
(∑

k

σkφk − fNN

)
︸ ︷︷ ︸

implementation error

.
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Function approximation with integer Bernstein

Kantorovich: If f : [0, 1]→ R is continuous and f (0) and f (1) are integers, then the
function

B∗n (f )(x) :=
n∑

k=0

[
f
( k

n

)(n
k

)]
xk(1− x)n−k,

converges uniformly to f as n→∞. Here, [t] is rounding t to the nearest integer.

Proof can be found in Chapter 2.4 of Constructive Approximation: Advanced Problems
by Lorentz, v Golitschek, and Makovoz.

Implies that polynomials with integer coefficients are dense in the space of
continuous functions.

Main drawback is that if ‖f‖∞ ≤ 1, then∣∣∣[f( k
n

)(n
k

)]∣∣∣ could be as big as 2n,

so not helpful for coarse quantization.
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One-bit Bernstein?

Bernstein polynomials of degree n: for each 0 ≤ k ≤ n,

pn,k(x) :=

(
n
k

)
xk(1− x)n−k.

Berstein: For any f ∈ C([0, 1]),

‖f − Bn(f )‖ =
∥∥∥f −

n∑
k=0

f
( k

n

)
pn,k

∥∥∥
∞
→ 0.

Question: For any f ∈ C([0, 1]) and ε > 0, is there an integer n and {σk}n
k=0 such that

σk ∈ {±1} and ∥∥∥f −
n∑

k=0

σkpn,k

∥∥∥
∞
≤ ε?
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One-bit Bernstein?

Bernstein polynomials of degree n: for each 0 ≤ k ≤ n,

pn,k(x) :=

(
n
k

)
xk(1− x)n−k.

Question: For any f ∈ C([0, 1]) such that ‖f‖∞ ≤ 1 and ε > 0, is there an integer n and
{σk}n

k=0 such that σk ∈ {±1} and for all x away from the endpoints,∣∣∣f (x)−
n∑

k=0

σkpn,k(x)
∣∣∣ < ε?
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A first approximation result

Theorem
For any Lipschitz continuous f with ‖f‖∞ ≤ 1 and integer n, there exist
{σk}n

k=0 ⊂ {±1}, such that∣∣∣f (x)−
n∑

k=0

σkpn,k(x)
∣∣∣ . 1 + |f |Lip

1 +
√

nx(1− x)
.

By density, can extend to continuous functions.

In comparison to Kantorovich, our construction uses significantly fewer bits.

Implies a Lp estimate: for all p ∈ [1, 2),∥∥∥f −
n∑

k=0

σkpn,k

∥∥∥
Lp([0,1])

.
1 + |f |Lip√

n
.
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A constructive proof

The sequence of ±1 are chosen through an algorithm called first order Σ∆.
Set ak = f (k/n) and we find σ such that it satisfies a finite difference equation

ak − σk = (∆u)k := uk − uk−1.

Can always be done with a ‖u‖∞ . 1 due to the assumption that ‖f‖∞ ≤ 1. Explicitly,

uk := uk−1 + ak − σk, σk := sign(ak + uk−1).

Bound the total error:∣∣∣f (x)−
n∑

k=0

σkpn,k(x)
∣∣∣

≤
∣∣∣f (x)−

n∑
k=0

akpn,k(x)
∣∣∣+
∣∣∣ n∑

k=0

(ak − σk)pn,k(x)
∣∣∣

.
|f |Lip√

n
+
∣∣∣ n∑

k=0

(∆u)k pn,k(x)
∣∣∣
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Defining pn,k+2 := 0,∣∣∣ n∑
k=0

(∆u)k pn,k(x)
∣∣∣ =

∣∣∣ n∑
k=0

uk
(
pn,k(x)− pn,k+1(x)

)∣∣∣
≤ ‖u‖∞

n∑
k=0

|pn,k(x)− pn,k+1(x)| (Frame variation)

=
‖u‖∞

(n + 1)x(1− x)

n∑
k=0

|(k + 1)− (n + 1)x| pn+1,k+1(x)

=
‖u‖∞

(n + 1)x(1− x)

( n∑
k=0

|(k + 1)− (n + 1)x|2 pn+1,k+1(x)
)1/2

.
1√

nx(1− x)
.

Frame variation 2 papers, [Benedetto, Powell, Yilmaz, 06]
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Simple demonstration

Consider the continuous function,

f (x) = max
(

min
(3

2
sin(8x), 1

)
,−1

)
.

Plot of Bn(f ) and constructed quantized approximation, for n = 100.

f

B(f)

Q(f)

Coefficients of quantized approximation (where −1↔ 0):

101011111111111111111111111111110111101010010000000

00000000000000000000010001001101110111111111111111
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Technical difficulties when extending to higher dimensions

The previous results give us hope that Bernstein polynomials satisfy our “wish list”, but
there is still a main concern when applying these results to networks:

high dimensionality −→ spaces of smooth functions.

Multivariate Bernstein of order n: For each k ∈ Nd with 0 ≤ kj ≤ n,

pn,k(x) := pn,k1 (x1) · · · pn,kd (xd).

High dimensionality is a major issue for Σ∆. No available O(1)-alphabet result for
stable d dimensional Σ∆.

Higher order smoothness is an issue do to this saturation result:
If f ∈ C2([0, 1]), then

lim
n→∞

n(Bn(f )(x)− f (x)) =
f ′′(x)x(1− x)

2
.

Bernstein polynomial of f is unable to exploit additional smoothness.
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Σ∆ in higher dimensions

Say d = 2. How to order {pn,k}n
k1=0,k2=0?
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Quantization error

Theorem
Pick any 1 ≤ ` ≤ d and for any {ak}0≤k≤n with ‖a‖∞ ≤ µ < 1, let {σk}0≤k≤d be a
solution to a r-th order Σ∆ scheme applied only in the `-th direction,

a− σ = (∆`)
ru.

Then we have∣∣∣ ∑
0≤k≤n

akpn,k(x)−
∑

0≤k≤n

σkpn,k(x)
∣∣∣ .r,µ min

(
1, n−r/2x−r

` (1− x`)
−r
)
.

Relies on stability of one-dimension r-th order Σ∆ schemes
[Daubechies, Devore 03], [Güntürk 03].
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Iterated Bernstein

Saturation: If f ∈ C2([0, 1]), then

lim
n→∞

n(Bn(f )(x)− f (x)) =
f ′′(x)x(1− x)

2
.

How to get around the saturation problem?

Classical work: [Micchelli 73], [Felbecker 79] Define the iterated Bernstein operator

Un,m(f ) :=
(

I − (I − Bn)
m
)

(f ).

The for every f ∈ Cs([0, 1]),

‖f − Un,ds/2e(f )‖∞ .s ‖f‖Cs n−s/2.

Takes advantage of smoothness, but is Um,n(f ) a linear combination of Bernstein
polynomials with small enough coefficients (necessary for quantization)?
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Approximation error by linear combinations of Bernstein

Theorem

Fix any integers d, s ≥ 1, δ ∈ (0, 1), and f ∈ Cs([0, 1]d). Then for all integers

n ≥ sd2‖f‖C2

4δ
,

there exist {ak}0≤k≤n such that∥∥∥f −
∑

0≤k≤n

akpn,k

∥∥∥
∞

.s,d ‖f‖Cs n−s/2,

and
‖a‖∞ ≤ ‖f‖∞ + δ.
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How to implement Bernstein polynomials?

1− xx

x

(1− x)22x(1− x)x
2

x
3 3x2(1− x) 3x(1− x)2 (1− x)3

(1− x)44x(1− x)36x2(1− x)24x3(1− x)x
4

1 1− x

x

x

x

x

xx

x xx

1− x

1− x1− x 1− x

1− x 1− x 1− x 1− x

1− x

Figure: Pascal triangle implementation of Bernstein
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How to multiply with coarse quantization

Key formula:

ab =
1
2

(a + b)2 − 1
2

a2 − 1
2

b2

Need to find a coarsely quantized neural network that can implement squaring.
Suffices for only non-negative a, b.

Easy if we use the quadratic non-linearity, ρ(t) = t2/2, so

ab = ρ(a + b)− ρ(a)− ρ(b).

This is a {±1}-quantized quadratic network.

Squaring can be efficiently approximated by a ReLU network [Yarotsky 17], by
exploiting the formula

x(1− x) =

∞∑
m=1

φ◦m

4m , φ(x) =

{
2x if 0 ≤ x ≤ 1

2 ,

2− 2x if 1
2 ≤ x ≤ 1.

Can do approximate multiplication with a {±1/2,±1,±2}-quantized ReLU
network.
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Putting everything together

f − fNN = f − fB︸ ︷︷ ︸
Bern. approx. error

+ fB − fQ︸ ︷︷ ︸
Bern. quan. error

+ fQ − fNN︸ ︷︷ ︸
Bern. implementation error

.

fB = iterated Bernstein of f , then covered to linear Bernstein.

fQ = function obtained from r-th order Σ∆ applied to coefficients of fB.

fNN = coarsely-quantized neural network approximation of fQ.
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Theorem

Fix any integers s, d ≥ 1, µ ∈ (0, 1), and any f ∈ Cs([0, 1]d) with ‖f‖∞ ≤ µ.

For any
1 ≤ ` ≤ d and all integers

n ≥ sd2‖f‖C2

2(1− µ)
,

there exists a function fNN that is implementable by a coarsely quantized neural network
such that for all x ∈ [0, 1]d,

|f (x)− fNN(x)| .s,d,µ ‖f‖Cs min
(
1, n−s/2x−s

` (1− x`)
−s).

fNN can be chosen as either
a {±1}-quantized quadratic neural network with

O(n + d) layers,

O(dn2 + dnd) nodes and parameters.

a {±1/2,±1,±2}-quantized ReLU neural network with

O
(
(n + d)

(
d + s/2

)
log n

)
layers,

O
(
(n2 + dnd)

(
d + s/2

)
log n

)
nodes and parameters.
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Network in the main theorem
x1 x2 x3 x4 x5

bn,k1(x1) bn,k2(x2) bn,k3(x3) bn,k4(x4) bn,k5(x5)

∑

0≤k≤n
σkbn,k(x)

bn,k(x)

Figure: Coarsely-quantized network
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Binary Bernstein Algorithm

System parameters and assumptions:
d, dimension or number of variables,
s, smoothness of the target function,
µ ∈ (0, 1), upper bound on ‖f‖∞,
n, any integer at least sd2‖f‖C2/(2(1− µ)).

Algorithm:
Input samples {f (k/n)}0≤k≤n.
Calculate {ak}0≤k≤n defined to be

ak := Un,ds/2e(f )
( k

n

)
.

Run s-th order Σ∆ quantization in the `-th direction on {ak}0≤k≤n to obtain

{σk}0≤k≤n ⊂ {±1}.

Guaranteed that∣∣∣f (x)−
∑

0≤k≤n

σkpn,k(x)
∣∣∣ .s,d,µ ‖f‖Cs min

(
1, n−s/2x−s

` (1− x`)
−s).
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Open question

Can these results be adapted and generalized to other approximation systems?

Some properties that we used:

Bernstein polynomials are non-negative and form a partition of unity.

Growth conditions on central moments.

Bernstein polynomials are localized but not too much.

Explicit formulas for pn,k+1 − pn,k; in particular, there is significant cancellation.
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Binary encoding of a neural network

Given a trained neural network F we can query it at lattice points {F(k/n)}0≤k≤n and
use our algorithm to produce a one-bit coefficients

{σk}0≤k≤n ⊆ {±1}.

(Can even be computed in parallel.)
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Thank you!!
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